Study on Emergency Load Shedding of Hybrid AC/DC Receiving-End Power Grid with Stochastic, Static Characteristics-Dependent Load Model

Author:

Jiang Yingying,Chen Xiaolin,Peng Sui,Du Xiao,Xu Dan,Tang JunjieORCID,Li Wenyuan

Abstract

When large-capacity HVDC (high voltage direct current) transmission line blocking occurs in a hybrid AC/DC (alternating current/direct current) power grid, the receiving-end system will encounter a huge power imbalance, which will lead to a frequency drop and redistribution of the power flow, and which may further lead to the overload of other transmission lines, cascading failures and a large-scale blackout. To resolve these problems, an emergency load-shedding strategy for the DC receiving-end system is proposed from the perspective of a quasi-steady state. The proposed method can accurately calculate the actual total power imbalance by modeling more detailed stochastic loads with static frequency/voltage characteristics and involving the inertia effect of the generator during the response delay period, which can effectively reduce the amount of load curtailment. In addition, several factors affecting the power imbalance estimation in stochastic scenarios and their mechanisms are analyzed in detail, and the key aspects relevant to the DC blocking fault analysis are identified as well. Finally, the influence of different load-shedding strategies on the receiving-end system security after a DC blocking fault is compared with the security indices, including those that are relevant to the frequency/load change proposed herein, and a uniform load-shedding coefficient is obtained via the proposed method, even for different power imbalances under a stochastic context, which makes the load-shedding strategy more practical.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3