Abstract
This study presents a new method for correcting the six degrees of freedom motion-induced error in ZephIR 300 floating Doppler Wind-LiDAR-derived data, based on a Robust Adaptive Unscented Kalman Filter. The filter takes advantage of the known floating Doppler Wind-LiDAR (FDWL) dynamics, a velocity–azimuth display algorithm, and a wind model describing the LiDAR-retrieved wind vector without motion influence. The filter estimates the corrected wind vector by adapting itself to different atmospheric and motion scenarios, and by estimating the covariance matrices of related noise processes. The measured turbulence intensity by the FDWL (with and without correction) was compared against a reference fixed LiDAR over a 25-day period at “El Pont del Petroli”, Barcelona. After correction, the apparent motion-induced turbulence was greatly reduced, and the statistical indicators showed overall improvement. Thus, the Mean Difference improved from −1.70% (uncorrected) to 0.36% (corrected), the Root Mean Square Error (RMSE) improved from 2.01% to 0.86%, and coefficient of determination improved from 0.85 to 0.93.
Funder
Agency for Administration of University and Research
AGENCIA ESTATAL DE INVESTIGACION
Subject
General Earth and Planetary Sciences
Reference49 articles.
1. Global Wind Report 2018,2019
2. Meteorological aspects of offshore wind energy: Observations from the Vindeby wind farm
3. Offshore Wind in Europe Key Trends and Statistics 2019,2020
4. Optimal Renewable Energy Systems: Minimizing the Cost of Intermittent Sources and Energy Storage
5. Carbon Trust Offshore Wind Accelerator Roadmap for the Commercial Acceptance of Floating LIDAR Technology,2013
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献