Robust GNSS Positioning Using Unbiased Finite Impulse Response Filter

Author:

Dou Jie1ORCID,Xu Bing2ORCID,Dou Lei1

Affiliation:

1. School of National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China

2. Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

Abstract

In a typical GNSS receiver, pseudorange and pseudorange rate measurements are generated through the code and carrier tracking loops, respectively. These measurements are then employed to calculate the user’s position and velocity (PV) solutions, which is typically achieved using a Kalman filter (KF) or the least squares (LS) algorithm. However, the LS method only uses the current observation without error analysis. The positioning result is greatly affected by the errors in the observed data. In KF, by using an iterative approach that combines predictions and measurements of PV information, more accurate estimates can be obtained because the PV information is time-correlated. Meanwhile, its optimal estimate requires that both the model and noise statistics are exactly known. Otherwise, achieving optimality cannot be guaranteed. To address this issue, this paper proposes and implements a novel GNSS solution method based on an unbiased finite impulse response (UFIR) filter. Two different field tests were conducted. The position results of UFIR are compared with those from the LS and KF methods, and the horizon positioning mean error is improved by 44% and 29%, respectively, which highlights its efficacy. The method offers two primary benefits: it is robust to noise uncertainty, and it leverages historical data within the UFIR framework to provide a more accurate estimate of the current state.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3