Abstract
Due to the large quantity of noise and complex spatial background of the remote sensing images, how to improve the accuracy of semantic segmentation has become a hot topic. Lake water body extraction is crucial for disaster detection, resource utilization, and carbon cycle, etc. The the area of lakes on the Tibetan Plateau has been constantly changing due to the movement of the Earth’s crust. Most of the convolutional neural networks used for remote sensing images are based on single-layer features for pixel classification while ignoring the correlation of such features in different layers. In this paper, the two-branch encoder is presented, which is a multiscale structure that combines the features of ResNet-34 with a feature pyramid network. Secondly, adaptive weights are distributed to global information using the hybrid-scale attention block. Finally, PixelShuffle is used to recover the feature maps’ resolution, and the densely connected block is used to refine the boundary of the lake water body. Likewise, we transfer the best weights which are saved on the Google dataset to the Landsat-8 dataset to ensure that our proposed method is robust. We validate the superiority of Hybrid-scale Attention Network (HA-Net) on two given datasets, which were created by us using Google and Landsat-8 remote sensing images. (1) On the Google dataset, HA-Net achieves the best performance of all five evaluation metrics with a Mean Intersection over Union (MIoU) of 97.38%, which improves by 1.04% compared with DeepLab V3+, and reduces the training time by about 100 s per epoch. Moreover, the overall accuracy (OA), Recall, True Water Rate (TWR), and False Water Rate (FWR) of HA-Net are 98.88%, 98.03%, 98.24%, and 1.76% respectively. (2) On the Landsat-8 dataset, HA-Net achieves the best overall accuracy and the True Water Rate (TWR) improvement of 2.93% compared to Pre_PSPNet, which proves to be more robust than other advanced models.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献