HA-Net: A Lake Water Body Extraction Network Based on Hybrid-Scale Attention and Transfer Learning

Author:

Wang ZhaobinORCID,Gao Xiong,Zhang YaonanORCID

Abstract

Due to the large quantity of noise and complex spatial background of the remote sensing images, how to improve the accuracy of semantic segmentation has become a hot topic. Lake water body extraction is crucial for disaster detection, resource utilization, and carbon cycle, etc. The the area of lakes on the Tibetan Plateau has been constantly changing due to the movement of the Earth’s crust. Most of the convolutional neural networks used for remote sensing images are based on single-layer features for pixel classification while ignoring the correlation of such features in different layers. In this paper, the two-branch encoder is presented, which is a multiscale structure that combines the features of ResNet-34 with a feature pyramid network. Secondly, adaptive weights are distributed to global information using the hybrid-scale attention block. Finally, PixelShuffle is used to recover the feature maps’ resolution, and the densely connected block is used to refine the boundary of the lake water body. Likewise, we transfer the best weights which are saved on the Google dataset to the Landsat-8 dataset to ensure that our proposed method is robust. We validate the superiority of Hybrid-scale Attention Network (HA-Net) on two given datasets, which were created by us using Google and Landsat-8 remote sensing images. (1) On the Google dataset, HA-Net achieves the best performance of all five evaluation metrics with a Mean Intersection over Union (MIoU) of 97.38%, which improves by 1.04% compared with DeepLab V3+, and reduces the training time by about 100 s per epoch. Moreover, the overall accuracy (OA), Recall, True Water Rate (TWR), and False Water Rate (FWR) of HA-Net are 98.88%, 98.03%, 98.24%, and 1.76% respectively. (2) On the Landsat-8 dataset, HA-Net achieves the best overall accuracy and the True Water Rate (TWR) improvement of 2.93% compared to Pre_PSPNet, which proves to be more robust than other advanced models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contrast Enhancement and ROI detection in satellite images Application to the environment and sustainable development;2024 8th International Conference on Image and Signal Processing and their Applications (ISPA);2024-04-21

2. Automatic Feature Extraction from High-Resolution Satellite Imagery using Deep Learning techniques;2024 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI);2024-04-17

3. A novel semantic feature enhancement network for extracting lake water from remote sensing images;International Journal of Machine Learning and Cybernetics;2024-04-15

4. LEFormer: A Hybrid CNN-Transformer Architecture for Accurate Lake Extraction from Remote Sensing Imagery;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

5. Towards interpretability lightweight semantic segmentation model for waterbody extraction in large-scale high resolution remote sensing images;International Journal of Remote Sensing;2024-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3