Monitoring the Severity of Pantana phyllostachysae Chao on Bamboo Using Leaf Hyperspectral Data

Author:

Huang Xuying,Xu ZhanghuaORCID,Yang Xu,Shi Jingming,Hu Xinyu,Ju Weimin

Abstract

Effectively monitoring Pantana phyllostachysae Chao (PPC) is essential for the sustainable development of the bamboo industry. However, the morphological similarity between damaged and off-year bamboo imposes challenges in the monitoring. The knowledge on whether the severity of this pest could be effectively monitored by using remote sensing methods is very limited. To fill this gap, this study aimed to identify the PPC damage of moso bamboo leaves using hyperspectral data. Specifically, we investigated differences in relative chlorophyll content (RCC), leaf water content (LWC), leaf nitrogen content (LNC), and hyperspectral spectrum among healthy, damaged (mildly damage, moderately damage, severely damage), and off-year bamboo leaves. Then, the hyperspectral indices sensitive to pest damage were selected by recursive feature elimination (RFE). The PPC damage identification model was constructed using the light gradient boosting machine (LightGBM) algorithm. We designed two different scenarios, without (A) and with (B) off-year samples, to evaluate the impact of off-year leaves on identification results. The RCC, the LWC, and the LNC of damaged leaves generally showed clear declined trends with the deterioration of damaged severity. The RCC and the LNC of off-year leaves were significantly lower than those of healthy and damaged leaves, whereas the LWC of off-leaves was significantly different from that of damaged leaves. The pest infestation caused noticeable distortion of leaf spectrum, increases in red and shortwave infrared bands, and decreases in green and near-infrared bands. The magnitude of reflectance change increased with the pest severity. The reflectance of off-year leaves in visible and near-infrared regions was distinguishably higher than that of healthy and damaged leaves. The overall accuracy (OA) of the constructed model for the identification of leaves with different degrees of damage severity reached 81.51%. When off-year, healthy, and damaged leaves were lumped together, the OA of the constructed model decreased by 5%. About half of the off-year leaf samples were misclassified into the damaged group. The identification of off-year leaves is a challenge for monitoring PPC damage using hyperspectral data. These results can provide practical guidance for monitoring PPC using remote sensing methods.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference79 articles.

1. Optimizing selective cutting strategies for maximum carbon stocks and yield of Moso bamboo forest using BIOME-BGC model

2. P.R.C. China Forest Resources Report (2014–2018),2019

3. Abandonment lead to structural degradation and changes in carbon allocation patterns in Moso bamboo forests

4. Life history of Pantana phyllostachysae and relationships between the insect and meteorological conditions;Chen;J. Zhejiang For. Coll.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3