Numerical Solving Method for Jiles-Atherton Model and Influence Analysis of the Initial Magnetic Field on Hysteresis

Author:

Xue GuangmingORCID,Bai Hongbai,Li Tuo,Ren Zhiying,Liu Xingxing,Lu Chunhong

Abstract

The Jiles-Atherton model was widely used in the description of the system with hysteresis, and the solution for the model was important for real-time and high-precision control. The secant method was used for solving anhysteretic magnetization and its initial values were optimized for faster convergence. Then, the Fourth Order Runge-Kutta method was employed to solve magnetization and the required computation cycles were supplied for stable results. Based on the solving method, the effect of the nonzero initial magnetic field on the magnetization was discussed, including the commonly used linear model of the square of magnetization under the medium initial value. From computations, the proposed secant iteration method, with supplied optimal initial values, greatly reduced the iterative steps compared to the fixed-point iteration. Combined with the Fourth Order Runge-Kutta method under more than three cycles of calculations, stable hysteresis results with controllable precisions were acquired. Adjusting the initial magnetic field changed the result of the magnetization, which was helpless to promote the amplitude or improve the symmetry of magnetization. Furthermore, the linear model of the square of magnetization was unacceptable for huge computational errors. The proposed numerical solving method can supply fast and high-precision solutions for the Jiles-Atherton model and provide a basis for the application scope of typical linear assumption.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference37 articles.

1. Schmool, D.S., and Markó, D. (2018). Reference Module in Materials Science and Materials Engineering, Elsevier.

2. A review on computational intelligence for identification of nonlinear dynamical systems;Nonlinear Dyn.,2020

3. A review of giant magnetostrictive injector (GMI);Sens. Actuators A Phys.,2018

4. Effects of stress on magnetization;NDT Int.,1986

5. Ferromagnetic hysteresis;IEEE Trans. Magn.,1983

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3