Parameter Identification of Model for Piezoelectric Actuators

Author:

Liu Dongmei1,Dong Jingqu1,Guo Shuai1,Tan Li1,Yu Shuyou2ORCID

Affiliation:

1. College of Electronic Information Engineering, Changchun University, Changchun 130022, China

2. Department of Control Science & Engineering, Jilin University, Changchun 130012, China

Abstract

Piezoelectric actuators are widely used in high-precision positioning systems. The nonlinear characteristics of piezoelectric actuators, such as multi-valued mapping and frequency-dependent hysteresis, severely limit the advancement of the positioning system’s accuracy. Therefore, a particle swarm genetic hybrid parameter identification method is proposed by combining the directivity of the particle swarm optimization algorithm and the genetic random characteristics of the genetic algorithm. Thus, the global search and optimization abilities of the parameter identification approach are improved, and the problems, including the genetic algorithm’s poor local search capability and the particle swarm optimization algorithm’s ease of falling into local optimal solutions, are resolved. The nonlinear hysteretic model of piezoelectric actuators is established based on the hybrid parameter identification algorithm proposed in this paper. The output of the model of the piezoelectric actuator is in accordance with the real output obtained from the experiments, and the root mean square error is only 0.029423 μm. The experimental and simulation results show that the model of piezoelectric actuators established by the proposed identification method can describe the multi-valued mapping and frequency-dependent nonlinear hysteresis characteristics of piezoelectric actuators.

Funder

Education Department of Jilin Province

Foundation of the Key Laboratory of the Industrial Internet of Things and Network Control

Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3