A Multiscale Deep Middle-level Feature Fusion Network for Hyperspectral Classification

Author:

Li Zhaokui,Huang Lin,He Jinrong

Abstract

Recently, networks consider spectral-spatial information in multiscale inputs less, even though there are some networks that consider this factor, however these networks cannot guarantee to get optimal features, which are extracted from each scale input. Furthermore, these networks do not consider the complementary and related information among different scale features. To address these issues, a multiscale deep middle-level feature fusion network (MMFN) is proposed in this paper for hyperspectral classification. In MMFN, the network fully fuses the strong complementary and related information among different scale features to extract more discriminative features. The training of network contains two stages: the first stage obtains the optimal models corresponding to different scale inputs and extracts the middle-level features under the corresponding scale model. It can guarantee the multiscale middle-level features are optimal. The second stage fuses the optimal multiscale middle-level features in the convolutional layer, and the subsequent residual blocks can learn the complementary and related information among different scale middle-level features. Moreover, the idea of identity mapping in residual learning can help the network obtain a higher accuracy when the network is deeper. The effectiveness of our method is proved on four HSI data sets and the experimental results show that our method outperforms the other state-of-the-art methods especially with small training samples.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3