Exploitation of Sentinel-2 Time Series to Map Burned Areas at the National Level: A Case Study on the 2017 Italy Wildfires

Author:

Filipponi FedericoORCID

Abstract

Satellite data play a major role in supporting knowledge about fire severity by delivering rapid information to map fire-damaged areas in a precise and prompt way. The high availability of free medium-high spatial resolution optical satellite data, offered by the Copernicus Programme, has enabled the development of more detailed post-fire mapping. This research study deals with the exploitation of Sentinel-2 time series to map burned areas, taking advantages from the high revisit frequency and improved spatial and spectral resolution of the MSI optical sensor. A novel procedure is here presented to produce medium-high spatial resolution burned area mapping using dense Sentinel-2 time series with no a priori knowledge about wildfire occurrence or burned areas spatial distribution. The proposed methodology is founded on a threshold-based classification based on empirical observations that discovers wildfire fingerprints on vegetation cover by means of an abrupt change detection procedure. Effectiveness of the procedure in mapping medium-high spatial resolution burned areas at the national level was demonstrated for a case study on the 2017 Italy wildfires. Thematic maps generated under the Copernicus Emergency Management Service were used as reference products to assess the accuracy of the results. Multitemporal series of three different spectral indices, describing wildfire disturbance, were used to identify burned areas and compared to identify their performances in terms of spectral separability. Result showed a total burned area for the Italian country in the year 2017 of around 1400 km2, with the proposed methodology generating a commission error of around 25% and an omission error of around 40%. Results demonstrate how the proposed procedure allows for the medium-high resolution mapping of burned areas, offering a benchmark for the development of new operational downstreaming services at the national level based on Copernicus data for the systematic monitoring of wildfires.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3