An Automated Cropland Burned-Area Detection Algorithm Based on Landsat Time Series Coupled with Optimized Outliers and Thresholds

Author:

Zhang Sumei1,Li Huijuan1,Zhao Hongmei2

Affiliation:

1. College of Mining and Engineering, Tai Yuan University of Technology, Taiyuan 030024, China

2. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

Abstract

Given the increasingly severe global fires, the accurate detection of small and fragmented cropland fires has been a significant challenge. The use of medium-resolution satellite data can enhance detection accuracy; however, key challenges in this approach include accurately capturing the annual and interannual variations of burning characteristics and identifying outliers within the time series of these changes. In this study, we focus on a typical crop-straw burning area in Henan Province, located on the North China Plain. We develop an automated burned-area detection algorithm based on near-infrared and short-wave infrared data from Landsat 5 imagery. Our method integrates time-series outlier analysis using filtering and automatic iterative algorithms to determine the optimal threshold for detecting burned areas. Our results demonstrate the effectiveness of using preceding time-series and seasonal time-series analysis to differentiate fire-related changes from seasonal and non-seasonal influences on vegetation. Optimal threshold validation results reveal that the automatic threshold method is efficient and feasible with an overall accuracy exceeding 93%. The resulting burned-area map achieves a total accuracy of 93.25%, far surpassing the 76.5% detection accuracy of the MCD64A1 fire product, thereby highlighting the efficacy of our algorithm. In conclusion, our algorithm is suitable for detecting burned areas in large-scale farmland settings and provides valuable information for the development of future detection algorithms.

Funder

National Natural Science Foundation of China

Excellent Young Scholars Found of Jilin Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3