Defining the Limits of Spectrally Based Bathymetric Mapping on a Large River

Author:

Legleiter CarlORCID,Fosness Ryan

Abstract

Remote sensing has emerged as a powerful method of characterizing river systems but is subject to several important limitations. This study focused on defining the limits of spectrally based mapping in a large river. We used multibeam echosounder (MBES) surveys and hyperspectral images from a deep, clear-flowing channel to develop techniques for inferring the maximum detectable depth, d m a x , directly from an image and identifying optically deep areas that exceed d m a x . Optimal Band Ratio Analysis (OBRA) of progressively truncated subsets of the calibration data provided an estimate of d m a x by indicating when depth retrieval performance began to deteriorate due to the presence of depths greater than the sensor could detect. We then partitioned the calibration data into shallow and optically deep ( d > d m a x ) classes and fit a logistic regression model to estimate the probability of optically deep water, P r ( O D ) . Applying a P r ( O D ) threshold value allowed us to delineate optically deep areas and thus only attempt depth retrieval in relatively shallow locations. For the Kootenai River, d m a x reached as high as 9.5 m at one site, with accurate depth retrieval ( R 2 = 0.94 ) in areas with d < d m a x . As a first step toward scaling up from short reaches to long river segments, we evaluated the portability of depth-reflectance relations calibrated at one site to other sites along the river. This analysis highlighted the importance of calibration data spanning a broad range of depths. Due to the inherent limitations of passive optical depth retrieval in large rivers, a hybrid field- and remote sensing-based approach would be required to obtain complete bathymetric coverage.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3