Comparison between Hyperspectral and Multispectral Retrievals of Suspended Sediment Concentration in Rivers

Author:

Jung Sung Hyun1,Kwon Siyoon2ORCID,Seo Il Won3,Kim Jun Song4ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea

2. Maseeh Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78758, USA

3. Institute of Construction and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea

4. Department of Civil and Environmental Engineering, Hankyong National University, Anseong-si 17579, Republic of Korea

Abstract

Remote sensing (RS) is often employed to estimate suspended sediment concentration (SSC) in rivers, and the availability of hyperspectral imagery enhances the effectiveness of RS-based water quality monitoring due to its high spectral resolution. Yet, the necessity of hyperspectral imagery for SSC estimation in rivers has not been fully validated. This study thus compares the performance of hyperspectral RS with that of multispectral RS by conducting field-scale experiments in shallow rivers. In the field experiments, we measured radiance from a water body mixed with suspended sediments using a drone-mounted hyperspectral sensor, with the sediment and riverbed types considered as controlling factors. We retrieved the SSC from UAV imagery using an optimal band ratio analysis, which successfully estimated SSC distributions in the sand bed conditions with both multispectral and hyperspectral data. In the vegetated bed conditions, meanwhile, the prediction accuracy decreased significantly due to the temporally varying bottom reflectance associated with the random movement of vegetation caused by near-bed turbulence. This is because temporally inhomogeneous bottom reflectance distorts the relationship between the SSC and total reflectance. Nevertheless, the hyperspectral imaging exhibited better prediction accuracy than the multispectral imaging, effectively extracting optimal spectral bands sensitive to back-scattered reflectance from sediments while constraining the bottom reflectance caused by the vegetation-covered bed.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF), Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3