Comparison of the Economy and Controllability of Pressure Swing Distillation with Two Energy-Saving Modes for Separating a Binary Azeotrope Containing Lower Alcohols

Author:

Lv ,Li ,Zhang ,Huang

Abstract

The pressure swing distillation (PSD) with two different energy-saving modes are put forward to separate a binary azeotrope containing lower alcohols: benzene/methanol. A comparison of the economy and controllability for the partial and fully heat integrated pressure swing distillation (HIPSD) is made by detailed simulation analysis. The optimal operating parameters of partial and fully HIPSD processes are obtained by minimizing total annual cost (TAC). These results show that the fully HIPSD mode saves 5.88% TAC compared with the partial HIPSD mode. Meanwhile, this paper proposes that the composition slope profile can help to select the temperature control stage (TCS), when the temperature profile in the column is rising rapidly near the bottom and the maximum of temperature slope value occurs in the bottom of the column. Several control structures are developed to check the rationality of the selection of the TCS and evaluate the industrial application. These results illustrate the composition/temperature cascade control structure for the PSD with two energy-saving modes can both get good control performances, and the purities of benzene and methanol can be brought close back to the initial value. However, the fully HIPSD mode can only handle much smaller composition disturbances (<10%) compared with the partial HIPSD mode. Therefore, the selection of energy-saving modes for the separation process should weigh economy against controllability.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3