A Comprehensive Overview of IoT-Based Federated Learning: Focusing on Client Selection Methods

Author:

Khajehali Naghmeh1ORCID,Yan Jun1,Chow Yang-Wai1ORCID,Fahmideh Mahdi2

Affiliation:

1. School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2522, Australia

2. School of Business, University of Southern Queensland (USQ), Brisbane, QLD 4350, Australia

Abstract

The integration of the Internet of Things (IoT) with machine learning (ML) is revolutionizing how services and applications impact our daily lives. In traditional ML methods, data are collected and processed centrally. However, modern IoT networks face challenges in implementing this approach due to their vast amount of data and privacy concerns. To overcome these issues, federated learning (FL) has emerged as a solution. FL allows ML methods to achieve collaborative training by transferring model parameters instead of client data. One of the significant challenges of federated learning is that IoT devices as clients usually have different computation and communication capacities in a dynamic environment. At the same time, their network availability is unstable, and their data quality varies. To achieve high-quality federated learning and handle these challenges, designing the proper client selection process and methods are essential, which involves selecting suitable clients from the candidates. This study presents a comprehensive systematic literature review (SLR) that focuses on the challenges of client selection (CS) in the context of federated learning (FL). The objective of this SLR is to facilitate future research and development of CS methods in FL. Additionally, a detailed and in-depth overview of the CS process is provided, encompassing its abstract implementation and essential characteristics. This comprehensive presentation enables the application of CS in diverse domains. Furthermore, various CS methods are thoroughly categorized and explained based on their key characteristics and their ability to address specific challenges. This categorization offers valuable insights into the current state of the literature while also providing a roadmap for prospective investigations in this area of research.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3