Efficiently Supporting Online Privacy-Preserving Data Publishing in a Distributed Computing Environment

Author:

Kim Jong Wook

Abstract

There has recently been an increasing need for the collection and sharing of microdata containing information regarding an individual entity. Because microdata typically contain sensitive information on an individual, releasing it directly for public use may violate existing privacy requirements. Thus, extensive studies have been conducted on privacy-preserving data publishing (PPDP), which ensures that any microdata released satisfy the privacy policy requirements. Most existing privacy-preserving data publishing algorithms consider a scenario in which a data publisher, receiving a request for the release of data containing personal information, anonymizes the data prior to publishing—a process that is usually conducted offline. However, with the increasing demand for the sharing of data among various parties, it is more desirable to integrate the data anonymization functionality into existing systems that are capable of supporting online query processing. Thus, we developed a novel scheme that is able to efficiently anonymize the query results on the fly, and thus support efficient online privacy-preserving data publishing. In particular, given a user’s query, the proposed approach effectively estimates the generalization level of each quasi-identifier attribute, thereby achieving the k-anonymity property in the query result datasets based on the statistical information without applying k-anonymity on all actual datasets, which is a costly procedure. The experiment results show that, through the proposed method, significant gains in processing time can be achieved.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3