High-Performance English–Chinese Machine Translation Based on GPU-Enabled Deep Neural Networks with Domain Corpus

Author:

Zhao Lanxin,Gao Wanrong,Fang Jianbin

Abstract

The ability to automate machine translation has various applications in international commerce, medicine, travel, education, and text digitization. Due to the different grammar and lack of clear word boundaries in Chinese, it is challenging to conduct translation from word-based languages (e.g., English) to Chinese. This article has implemented a GPU-enabled deep learning machine translation system based on a domain-specific corpus. Our system takes English text as input and uses an encoder-decoder model with an attention mechanism based on Google’s Transformer to translate the text to Chinese output. The model was trained using a simple self-designed entropy loss function and an Adam optimizer on English–Chinese bilingual text sentences from the News area of the UM-Corpus. The parallel training process of our model can be performed on common laptops, desktops, and servers with one or more GPUs. At training time, we not only track loss over training epochs but also measure the quality of our model’s translations with the BLEU score. We also provide an easy-to-use web interface for users so as to manage corpus, training projects, and trained models. The experimental results show that we can achieve a maximum BLEU score of 29.2. We can further improve this score by tuning other hyperparameters. The GPU-enabled model training runs over 15x faster than on a multi-core CPU, which facilitates us having a shorter turn-around time. As a case study, we compare the performance of our model to that of Baidu’s, which shows that our model can compete with the industry-level translation system. We argue that our deep-learning-based translation system is particularly suitable for teaching purposes and small/medium-sized enterprises.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3