The neural machine translation models for the low-resource Kazakh–English language pair

Author:

Karyukin Vladislav1,Rakhimova Diana12ORCID,Karibayeva Aidana1,Turganbayeva Aliya1,Turarbek Asem1

Affiliation:

1. Department of Information Systems, Al-Farabi Kazakh National University, Almaty, Kazakhstan

2. Institute of Information and Computational Technologies, Almaty, Kazakhstan

Abstract

The development of the machine translation field was driven by people’s need to communicate with each other globally by automatically translating words, sentences, and texts from one language into another. The neural machine translation approach has become one of the most significant in recent years. This approach requires large parallel corpora not available for low-resource languages, such as the Kazakh language, which makes it difficult to achieve the high performance of the neural machine translation models. This article explores the existing methods for dealing with low-resource languages by artificially increasing the size of the corpora and improving the performance of the Kazakh–English machine translation models. These methods are called forward translation, backward translation, and transfer learning. Then the Sequence-to-Sequence (recurrent neural network and bidirectional recurrent neural network) and Transformer neural machine translation architectures with their features and specifications are concerned for conducting experiments in training models on parallel corpora. The experimental part focuses on building translation models for the high-quality translation of formal social, political, and scientific texts with the synthetic parallel sentences from existing monolingual data in the Kazakh language using the forward translation approach and combining them with the parallel corpora parsed from the official government websites. The total corpora of 380,000 parallel Kazakh–English sentences are trained on the recurrent neural network, bidirectional recurrent neural network, and Transformer models of the OpenNMT framework. The quality of the trained model is evaluated with the BLEU, WER, and TER metrics. Moreover, the sample translations were also analyzed. The RNN and BRNN models showed a more precise translation than the Transformer model. The Byte-Pair Encoding tokenization technique showed better metrics scores and translation than the word tokenization technique. The Bidirectional recurrent neural network with the Byte-Pair Encoding technique showed the best performance with 0.49 BLEU, 0.51 WER, and 0.45 TER.

Funder

Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

PeerJ

Subject

General Computer Science

Reference45 articles.

1. Enhanced back-translation for low resource neural machine translation using self-training;Abdulmumin;Communications in Computer and Information Science,2020

2. A hybrid approach for improved low resource neural machine translation using monolingual data;Abdulmumin;Engineering Letters,2020

3. Strengthening low-resource neural machine translation through joint learning: the case of Farsi-Spanish;Ahmadnia,2021

4. Statistical machine translation;Babhulgaonkar,2017

5. Results of the WMT17 metrics shared task;Bojar,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3