Abstract
Introduction The use of scaffolds in tissue engineering is becoming increasingly important as solutions need to be found to preserve human tissues such as bone or cartilage. Various factors, including cells, biomaterials, cell and tissue culture conditions, play a crucial role in tissue engineering. The in vivo environment of the cells exerts complex stimuli on the cells, thereby directly influencing cell behavior, including proliferation and differentiation. Therefore, to create suitable replacement or regeneration procedures for human tissues, the conditions of the cells’ natural environment should be well mimicked. Therefore, current research is trying to develop 3-dimensional scaffolds (scaffolds) that can elicit appropriate cellular responses and thus help the body regenerate or replace tissues. In this work, scaffolds were printed from the biomaterial polycaprolactone (PCL) on a 3D bioplotter. Biocompatibility testing was used to determine whether the printed scaffolds were suitable for use in tissue engineering. Material and Methods An Envisiontec 3D bioplotter was used to fabricate the scaffolds. For better cell-scaffold interaction, the printed polycaprolactone scaffolds were coated with type-I collagen. Three different cell types were then cultured on the scaffolds and various tests were used to investigate the biocompatibility of the scaffolds. Results Reproducible scaffolds could be printed from polycaprolactone. In addition, a coating process with collagen was developed, which significantly improved the cell-scaffold interaction. Biocompatibility tests showed that the PCL-collagen scaffolds are suitable for use with cells. The cells adhered to the surface of the scaffolds and as a result extensive cell growth was observed on the scaffolds. The inner part of the scaffolds, however, remained largely uninhabited. In the cytotoxicity studies, it was found that toxicity below 20% was present in some experimental runs. The determination of the compressive strength by means of the universal testing machine Z005 by ZWICK according to DIN EN ISO 604 of the scaffolds resulted in a value of 68.49 ± 0.47 MPa.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference30 articles.
1. Mitten im Demografischen Wandel
https://www.destatis.de/DE/Themen/Querschnitt/Demografischer-Wandel/demografie-mitten-im-wandel.html
2. European Union: Age Structure in the Member States in 2019
https://de.statista.com/statistik/daten/studie/248981/umfrage/altersstruktur-in-den-eu-laendern/
3. Recent advances in bone tissue engineering scaffolds
4. Gesundheit—Fallpauschalenbezogene Krankenhausstatistik (Drg-Statistik) Operationen und Prozeduren der Vollstationären Patientinnen und Patienten in Krankenhäusern (4-Steller),2020
5. Surgical Operations and Procedures Statistics,2020
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献