Optical In-Process Measurement: Concepts for Precise, Fast and Robust Optical Metrology for Complex Measurement Situations

Author:

Bergmann Ralf B.ORCID,Kalms Michael,Falldorf ClaasORCID

Abstract

Optical metrology is a key element for many areas of modern production. Preferably, measurements should take place within the production line (in-process) and keep pace with production speed, even if the parts have a complex geometry or are difficult to access. The challenge for modern optical in-process measurements is, therefore, how to simultaneously make optical metrology precise, fast, robust and capable of handling geometrical complexity. The potential of individual techniques to achieve these demands can be visualized by the tetrahedron of optical metrology. Depending on the application, techniques based on interferometry or geometrical optics may have to be preferred. The paper emphasizes complexity and robustness as prime areas of improvement. Concerning interferometric techniques, we report on fast acquisition as used in holography, tailoring of coherence properties and use of Multiple simultaneous Viewing direction holography (MultiView), self reference used in Computational Shear Interferometry (CoSI) and the simultaneous use of several light sources in Multiple Aperture Shear Interferometry (MArS) based on CoSI as these techniques have proven to be particularly effective. The use of advanced approaches based on CoSI requires a transition of the description of light from the use of the well-known wave field to the coherence function of light. Techniques based on geometric optics are generally comparatively robust against environmental disturbances, and Fringe Projection (FP) is shown to be especially useful in very demanding measurement conditions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3