A Graph Theory-Based Method for Dynamic Modeling and Parameter Identification of 6-DOF Industrial Robots

Author:

Cheng Jun,Bi Shusheng,Yuan Chang,Chen Lin,Cai Yueri,Yao Yanbin

Abstract

At present, the absolute positioning accuracy and control accuracy of industrial serial robots need to be improved to meet the accuracy requirements of precision manufacturing and precise control. An accurate dynamic model is an important theoretical basis for solving this problem, and precise dynamic parameters are the prerequisite for precise control. The research of dynamics and parameter identification can greatly promote the application of robots in the field of precision manufacturing and automation. In this paper, we study the dynamical modeling and dynamic parameter identification of an industrial robot system with six rotational DOF (6R robot system) and propose a new method for identifying dynamic parameters. Our aim is to provide an accurate mathematical description of the dynamics of the 6R robot and to accurately identify its dynamic parameters. First, we establish an unconstrained dynamic model for the 6R robot system and rewrite it to obtain the dynamic parameter identification model. Second, we establish the constraint equations of the 6R robot system. Finally, we establish the dynamic model of the constrained 6R robot system. Through the ADAMS simulation experiment, we verify the correctness and accuracy of the dynamic model. The experiments prove that the result of parameter identification has extremely high accuracy and the dynamic model can accurately describe the 6R robot system mathematically. The dynamic modeling method proposed in this paper can be used as the theoretical basis for the study of 6R robot system dynamics and the study of dynamics-based control theory.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3