Superpixel-Based Singular Spectrum Analysis for Effective Spatial-Spectral Feature Extraction

Author:

Subudhi SubhashreeORCID,Patro  RamnarayanORCID,Biswal Pradyut Kumar,Dell’Acqua FabioORCID

Abstract

In the processing of remotely sensed data, classification may be preceded by feature extraction, which helps in making the most informative parts of the data emerge. Effective feature extraction may boost the efficiency and accuracy of the following classification, and hence various methods have been proposed to perform it. Recently, Singular Spectrum Analysis (SSA) and its 2-D variation (2D-SSA) have emerged as popular, cutting-edge technologies for effective feature extraction in Hyperspectral Images (HSI). Using 2D-SSA, each band image of an HSI is initially decomposed into various components, and then the image is reconstructed using the most significant eigen-tuples relative to their eigen-values, which represent strong spatial features for the classification task. However, instead of performing reconstruction on the whole image, it may be more effective to apply reconstruction to object-specific spatial regions, which is the proposed objective of this research. As an HSI may cover a large area, multiple objects are generally present within a single scene. Hence, spatial information can be highlighted accurately by specializing the reconstruction based on the local context. The local context may be defined by the so-called superpixels, i.e., finite sets of pixels that constitute a homogeneous set. Each superpixel may undergo tailored reconstruction, with a process expected to perform better than non-spatially-adaptive approaches. In this paper, a Superpixel-based SSA (SP-SSA) method is proposed where the image is first segmented into multiple regions using a superpixel segmentation approach. Next, each segment is individually reconstructed using 2D-SSA. In doing so, the spatial contextual information is preserved, leading to better classifier performance. The performance of the reconstructed features is evaluated using an SVM classifier. Experiments on four popular benchmark datasets reveal that, in terms of the classification accuracy, the proposed approach overperforms the standard SSA technique and various common spatio-spectral classification methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3