Frequency-Weighted Singular Spectrum Analysis for Time Series

Author:

Kume Kenji1ORCID,Konashi Hiroshi2,Higuchi Katsuichi3

Affiliation:

1. Department of Physics, Nara Women’s University, Nara 630-8506, Japan

2. Otemae University, Nishinomiya 662-8552, Japan

3. Koshien University, Takarazuka 665-0006, Japan

Abstract

Singular spectrum analysis (SSA) is a nonparametric spectral decomposition of a time series. A time series is exactly separated into arbitrary number of additive subsequences with the singular value decomposition. Previously, we have shown that SSA algorithm can equivalently be formulated as an optimality condition for the generation of adaptive filters. In this paper, based on our optimal-filter viewpoint, we show that the spectral weight factor can naturally be introduced into the SSA algorithm. With this extension, we can selectively focus on the specific frequency domain of the time series, and then the detailed study of the time series with complicated spectral structure becomes possible.

Funder

Japan Society for the Promotion of Science

Publisher

World Scientific Pub Co Pte Ltd

Subject

Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3