Screening Support System Based on Patient Survey Data—Case Study on Classification of Initial, Locally Collected COVID-19 Data

Author:

Henzel JoannaORCID,Tobiasz JoannaORCID,Kozielski MichałORCID,Bach MałgorzataORCID,Foszner Paweł,Gruca AleksandraORCID,Kania Mateusz,Mika JustynaORCID,Papiez AnnaORCID,Werner AleksandraORCID,Zyla JoannaORCID,Jaroszewicz Jerzy,Polanska JoannaORCID,Sikora MarekORCID

Abstract

New diseases constantly endanger the lives of populations, and, nowadays, they can spread easily and constitute a global threat. The COVID-19 pandemic has shown that the fight against a new disease may be difficult, especially at the initial stage of the epidemic, when medical knowledge is not complete and the symptoms are ambiguous. The use of machine learning tools can help to filter out those sick patients who do not need to be tested for spreading the pathogen, especially in the event of an overwhelming increase in disease transmission. This work presents a screening support system that can precisely identify patients who do not carry the disease. The decision of the system is made on the basis of patient survey data that are easy to collect. A case study on a data set of symptomatic COVID-19 patients shows that the system can be effective in the initial phase of the epidemic. The case study presents an analysis of two classifiers that were tuned to achieve an assumed acceptable threshold of negative predictive values during classification. Additionally, an explanation of the obtained classification models is presented. The explanation enables the users to understand the basis of the decision made by the model. The obtained classification models provide the basis for the DECODE service, which could serve as support in screening patients with COVID-19 disease at the initial stage of the pandemic. Moreover, the data set constituting the basis for the analyses performed is made available to the research community. This data set, consisting of more than 3000 examples, is based on questionnaires collected at a hospital in Poland.

Funder

European Commission

Silesian University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3