Abstract
There is a significant interest in facial emotion recognition in the fields of human–computer interaction and social sciences. With the advancements in artificial intelligence (AI), the field of human behavioral prediction and analysis, especially human emotion, has evolved significantly. The most standard methods of emotion recognition are currently being used in models deployed in remote servers. We believe the reduction in the distance between the input device and the server model can lead us to better efficiency and effectiveness in real life applications. For the same purpose, computational methodologies such as edge computing can be beneficial. It can also encourage time-critical applications that can be implemented in sensitive fields. In this study, we propose a Raspberry-Pi based standalone edge device that can detect real-time facial emotions. Although this edge device can be used in variety of applications where human facial emotions play an important role, this article is mainly crafted using a dataset of employees working in organizations. A Raspberry-Pi-based standalone edge device has been implemented using the Mini-Xception Deep Network because of its computational efficiency in a shorter time compared to other networks. This device has achieved 100% accuracy for detecting faces in real time with 68% accuracy, i.e., higher than the accuracy mentioned in the state-of-the-art with the FER 2013 dataset. Future work will implement a deep network on Raspberry-Pi with an Intel Movidious neural compute stick to reduce the processing time and achieve quick real time implementation of the facial emotion recognition system.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference29 articles.
1. Language within Language: Immediacy, a Channel in Verbal Communication;Wiener,1968
2. The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions
3. Emotion recognition via facial expression and affective prosody in schizophrenia
4. Openface: A general-purpose face recognition library with mobile applications;Amos;CMU Sch. Comput. Sci.,2016
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献