WE-ASCA: The Weighted-Effect ASCA for Analyzing Unbalanced Multifactorial Designs—A Raman Spectra-Based Example

Author:

Ali NairveenORCID,Jansen Jeroen,van den Doel André,Tinnevelt Gerjen Herman,Bocklitz ThomasORCID

Abstract

Analyses of multifactorial experimental designs are used as an explorative technique describing hypothesized multifactorial effects based on their variation. The procedure of analyzing multifactorial designs is well established for univariate data, and it is known as analysis of variance (ANOVA) tests, whereas only a few methods have been developed for multivariate data. In this work, we present the weighted-effect ASCA, named WE-ASCA, as an enhanced version of ANOVA-simultaneous component analysis (ASCA) to deal with multivariate data in unbalanced multifactorial designs. The core of our work is to use general linear models (GLMs) in decomposing the response matrix into a design matrix and a parameter matrix, while the main improvement in WE-ASCA is to implement the weighted-effect (WE) coding in the design matrix. This WE-coding introduces a unique solution to solve GLMs and satisfies a constrain in which the sum of all level effects of a categorical variable equal to zero. To assess the WE-ASCA performance, two applications were demonstrated using a biomedical Raman spectral data set consisting of mice colorectal tissue. The results revealed that WE-ASCA is ideally suitable for analyzing unbalanced designs. Furthermore, if WE-ASCA is applied as a preprocessing tool, the classification performance and its reproducibility can significantly improve.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference26 articles.

1. Sampling Techniques.

2. Sampling and Assignment Mechanisms in Experiments, Surveys and Observational Studies, Correspondent Paper

3. Experimental Design: Review and Comment

4. Statistical Principles of Experimental Design;Winer,1962

5. Statistical Methods in Agriculture and Experimental Biology;Mead,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3