Deep Eutectic Solvent-Based Dispersive Liquid–Liquid Microextraction Coupled with LC-MS/MS for the Analysis of Two Ochratoxins in Capsicum

Author:

Yang Hongbo1ORCID,Li Jin1,Mao Jianfei23,Xu Chan1,Song Jieyu1,Xie Feng145

Affiliation:

1. School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China

2. College of Chemistry, Sichuan University, Chengdu 610064, China

3. Guizhou Jiandee Technology Co., Ltd., Guiyang 550025, China

4. Guizhou Academy of Testing and Analysis, Guiyang 550014, China

5. Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China

Abstract

Ochratoxins, a common class of mycotoxin in capsicum, and techniques and methods for the determination of mycotoxins in spices have been increasingly developed in recent years. An innovative and eco-friendly method of dispersive liquid–liquid microextraction (DLLME) was demonstrated in this study, based on a synthesized deep eutectic solvent (DES) combined with LC-MS/MS, for the quantification and analysis of two ochratoxins in capsicum. The DES-DLLME method parameters entail selecting the DES type (thymol:decanoic acid, molar ratio 1:1) and DES volume (100 μL). The volume of water (3 mL) and salt concentration (0 g) undergo optimization following a step-by-step approach to achieve optimal target substance extraction efficiency. The matrix effect associated with the direct detection of the target substance in capsicum was significantly reduced in this study by the addition of isotopic internal standards corresponding to the target substance. This facilitated optimal conditions wherein quantitative analysis using LC-MS/MS revealed a linear range of 0.50–250.00 µg/mL, with all two curves calibrated with internal standards showing correlation coefficients (r2) greater than 0.9995. The method’s limits of detection (LODs) and limits of quantification (LOQs) fell in the ranges of 0.14–0.45 μg/kg and 0.45–1.45 μg/kg, respectively. The method’s spiked recoveries ranged from 81.97 to 105.17%, indicating its sensitivity and accuracy. The environmental friendliness of the technique was assessed using two green assessment tools, AGREE and complexGAPI, and the results showed that the technique was more in line with the concept of sustainable development compared to other techniques for detecting ochratoxins in capsicum. Overall, this study provides a new approach for the determination of mycotoxins in a complex food matrix such as capsicum and other spices using DES and also contributes to the application of green analytical chemistry methods in the food industry.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guizhou Province

Guizhou Medical University Doctoral Initiation Fund, Project Contract

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3