Carotenoid Recovery from Tomato Processing By-Products through Green Chemistry

Author:

Szabo KatalinORCID,Teleky Bernadette-EmőkeORCID,Ranga Floricuta,Roman Ioana,Khaoula Hattab,Boudaya Emna,Ltaief Amina Ben,Aouani Wael,Thiamrat Mangkorn,Vodnar Dan CristianORCID

Abstract

The recovery of bioactive compounds from agro-industry-derived by-products sustains circular economy principles by encouraging maximized recycling and minimized waste. Tomato processing by-products are abundant in carotenoids, which have several health-promoting properties, and their reintegration into functional food products represents a major interest for scientists and manufacturers. In the present study, carotenoids were recovered from tomato processing by-products based on the principles of green chemistry by using generally recognized as safe (GRAS) solvents, freeze-drying as pretreatment, and ultrasound in the recovery procedure. Spectrophotometric measurements and HPLC were used to identify and quantify total and individual carotenoids from the extracts. The highest values for lycopene (1324.89 µg/g dw) were obtained when ethyl lactate was applied as a solvent, followed by ethyl acetate with slightly smaller differences (1313.54 µg/g dw). The extracts obtained from freeze-dried samples presented significantly lower amounts of lycopene, indicating that carotenoids are highly susceptible to degradation during lyophilization. Flaxseed, grape seed, and hempseed oils were enriched with carotenoids and their rheological measurements showed favorable viscoelastic properties, especially hempseed and flaxseed oil, with viscosity under 50 mPa·s. Considering the results and the economic perspective of carotenoid recovery from tomato processing by-products, ethyl acetate is suitable, sustainable, and environmentally friendly for carotenoid extraction.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3