Enhanced Electrocatalytic Detection of Choline Based on CNTs and Metal Oxide Nanomaterials

Author:

Uwaya Gloria E.,Fayemi Omolola E.ORCID

Abstract

Choline is an officially established essential nutrient and precursor of the neurotransmitter acetylcholine. It is employed as a cholinergic activity marker in the early diagnosis of brain disorders such as Alzheimer’s and Parkinson’s disease. Low levels of choline in diets and biological fluids, such as blood plasma, urine, cerebrospinal and amniotic fluid, could be an indication of neurological disorder, fatty liver disease, neural tube defects and hemorrhagic kidney necrosis. Meanwhile, it is known that choline metabolism involves oxidation, which frees its methyl groups for entrance into single-C metabolism occurring in three phases: choline oxidase, betaine synthesis and transfer of methyl groups to homocysteine. Electrocatalytic detection of choline is of physiological and pathological significance because choline is involved in the physiological processes in the mammalian central and peripheral nervous systems and thus requires a more reliable assay for its determination in biological, food and pharmaceutical samples. Despite the use of several methods for choline determination, the superior sensitivity, high selectivity and fast analysis response time of bioanalytical-based sensors invariably have a comparative advantage over conventional analytical techniques. This review focuses on the electrocatalytic activity of nanomaterials, specifically carbon nanotubes (CNTs), CNT nanocomposites and metal/metal oxide-modified electrodes, towards choline detection using electrochemical sensors (enzyme and non-enzyme based), and various electrochemical techniques. From the survey, the electrochemical performance of the choline sensors investigated, in terms of sensitivity, selectivity and stability, is ascribed to the presence of these nanomaterials.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3