The Influence of Single, Tandem, and Clustered DNA Damage on the Electronic Properties of the Double Helix: A Theoretical Study

Author:

Karwowski Bolesław T.ORCID

Abstract

Oxidatively generated damage to DNA frequently appears in the human genome as the effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents, such as ionization radiation. In this paper, the electronic properties of single, tandem, and clustered DNA damage in comparison with native ds-DNA are discussed as a comparative analysis for the first time. A single lesion—8-oxo-7,8-dihydro-2′-deoxyguanosine (Goxo), a tandem lesion—(5′S) and (5′R) 5′,8-cyclo-2′-deoxyadenosine (cdA), and the presence of both of them in one helix turn as clustered DNA damage were chosen and taken into consideration. The lowest vertical and adiabatic potential (VIP ~ 5.9 and AIP ~ 5.5 eV, respectively) were found for Goxo, independently of the discussed DNA lesion type and their distribution within the double helix. Moreover, the VIP and AIP were assigned for ds-trimers, ds- dimers and single base pairs isolated from parental ds-hexamers in their neutral and cationic forms. The above results were confirmed by the charge and spin density population, which revealed that Goxo can be considered as a cation radical point of destination independently of the DNA damage type (single, tandem, or clustered). Additionally, the different influences of cdA on the charge transfer rate were found and discussed in the context of tandem and clustered lesions. Because oligonucleotide lesions are effectively produced as a result of ionization factors, the presented data in this article might be valuable in developing a new scheme of anticancer radiotherapy efficiency.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference65 articles.

1. Review: Nuclear Structure and DNA Replication

2. Oxidative DNA damage: mechanisms, mutation, and disease

3. DNA: Damage and Repair Mechanisms in Humans

4. Pharmacology of free radicals and the impact of reactive oxygen species on the testis;Aprioku;J. Reprod. Infertil.,2013

5. Role of oxygen radicals in DNA damage and cancer incidence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3