The 2Ih and OXOG Proximity Consequences on Charge Transfer through ds-DNA: Theoretical Studies of Clustered DNA Damage

Author:

Karwowski Boleslaw T.1

Affiliation:

1. DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland

Abstract

Genetic information is continuously exposed to harmful factors, both intra- and extracellular. Their activity can lead to the formation of different types of DNA damage. Clustered lesions (CDL) are problematic for DNA repair systems. In this study, the short ds-oligos with a CDL containing (R) or (S) 2Ih and OXOG in their structure were chosen as the most frequent in vitro lesions. In the condensed phase, the spatial structure was optimized at the M062x/D95**:M026x/sto-3G level of theory, while the electronic properties were optimized at the M062x/6-31++G** level. The influence of equilibrated and non-equilibrated solvent-solute interactions was then discussed. It was found that the presence of (R)2Ih in the ds-oligo structure causes a greater increase in structure sensitivity towards charge adoption than (S)2Ih, while OXOG shows high stability. Moreover, the analysis of charge and spin distribution reveals the different effects of 2Ih diastereomers. Additionally, the adiabatic ionization potential was found as follows for (R)-2Ih and (S)-2Ih in eV: 7.02 and 6.94. This was in good agreement with the AIP of the investigated ds-oligos. It was found that the presence of (R)-2Ih has a negative influence on excess electron migration through ds-DNA. Finally, according to the Marcus theory, the charge transfer constant was calculated. The results presented in the article show that both diastereomers of 5-carboxamido-5-formamido-2-iminohydantoin should play a significant role in the CDL recognition process via electron transfer. Moreover, it should be pointed out that even though the cellular level of (R and S)-2Ih has been obscured, their mutagenic potential should be at the same level as other similar guanine lesions found in different cancer cells.

Funder

Medical University of Lodz

PL-Grid infrastructure

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3