Affiliation:
1. Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC (China National Tobacco Corporation), No. 2 Fengyang Street, Zhengzhou 450001, China
Abstract
Heterocyclic aromatic amine molecularly imprinted polymer nanospheres with surface-bound dithioester groups (haa-MIP) were firstly synthesized via reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization. Then, a series of core-shell structural heterocyclic aromatic amine molecularly imprinted polymer nanospheres with hydrophilic shells (MIP-HSs) were subsequently prepared by grafting the hydrophilic shells on the surface of haa-MIP via on-particle RAFT polymerization of 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA), and diethylaminoethyl methacrylate (DEAEMA). The haa-MIP nanospheres showed high affinity and specific recognition toward harmine and its structural analogs in organic solution of acetonitrile, but lost the specific binding ability in aqueous solution. However, after the grafting of the hydrophilic shells on the haa-MIP particles, the surface hydrophilicity and water dispersion stability of the polymer particles of MIP-HSs greatly improved. The binding of harmine by MIP-HSs with hydrophilic shells in aqueous solutions is about two times higher than that of NIP-HSs, showing an efficient molecular recognition of heterocyclic aromatic amines in aqueous solution. The effect of hydrophilic shell structure on the molecular recognition property of MIP-HSs was further compared. MIP-PIA with carboxyl groups containing hydrophilic shells showed the highest selective molecular recognition ability to heterocyclic aromatic amines in aqueous solution.
Funder
Natural Science Foundation of Henan
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献