A Theoretical Study of the C–X Bond Cleavage Mediated by Cob(II)Aloxime

Author:

Seijas Luis E.ORCID,Zambrano Cesar H.,Rodríguez Vladimir,Alí-Torres JorgeORCID,Rincón Luis,Torres F. Javier

Abstract

The C–X bond cleavage in different methyl halides (CH3X; X = Cl, Br, I) mediated by 5,6-dimethylbenzimidazole-bis(dimethylglyoximate)cobalt(II) (CoIICbx) was theoretically investigated in the present work. An SN2-like mechanism was considered to simulate the chemical process where the cobalt atom acts as the nucleophile and the halogen as the leaving group. The reaction path was computed by means of the intrinsic reaction coordinate method and analyzed in detail through the reaction force formalism, the quantum theory of atoms in molecules (QTAIM), and the calculation of one-electron density derived quantities, such as the source function (SF) and the spin density. A thorough comparison of the results with those obtained in the same reaction occurring in presence of 5,6-dimethylbenzimidazole-bis(dimethylglyoximate)cobalt(I) (CoICbx) was conducted to reveal the main differences between the two cases. The reactions mediated by CoIICbx were observed to be endothermic and possess higher activation energies in contrast to the reactions where the CoICbx complex is present. The latter was supported by the reaction force results, which suggest a relationship between the activation energy and the ionization potentials of the different nucleophiles present in the cleavage reaction. Moreover, the SF results indicates that the lower axial ligand (i.e., 5,6-dimethylbenzimidazole) exclusively participates on the first stage of the reaction mediated by the CoIICbx complex, while for the CoICbx case, it appears to have an important role along the whole process. Finally, the QTAIM charge analysis indicates that oxidation of the cobalt atom occurs in both cases; at the same time, it suggests the formation of an uncommon two-center one-electron bond in the CoIICbx case. The latter was confirmed by means of electron localization calculations, which resulted in a larger electron count at the Co–C interatomic region for the CoICbx case upon comparison with its CoIICbx counterpart.

Funder

Universidad del Rosario

Universidad San Francisco de Quito’s POLIGRANTS program

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference68 articles.

1. Patai, S.E. The Chemistry of Functional Groups The Chemistry of the Carbon-Halogen Bond. Patai Chemistry of Carbon-Halogen Bond, 2010.

2. The Natural Chlorine Cycle—Fitting the Scattered Pieces;Öberg;Appl. Microbiol. Biotechnol.,2002

3. Chlorine Cycling and the Fate of Cl in Terrestrial Environments;Svensson;Environ. Sci. Pollut. Res. Int.,2021

4. Organohalide Respiration: Microbes Breathing Chlorinated Molecules;Leys;Philos. Trans. R. Soc. Lond. B Biol. Sci.,2013

5. Kodavanti, P.R.S., and Loganathan, B.G. Organohalogen Pollutants and Human Health. Int. Encycl. Public Health (Second Ed.), 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3