Quantification of Cooking Method Effect on COP Content in Meat Types Using Triple Quadrupole GC-MS/MS

Author:

Hashari Shazamawati Zam,Rahim Alina AbdulORCID,Meng Goh YongORCID,Ramiah Suriya KumariORCID

Abstract

A diet containing cholesterol is an essential component of biological function; however, cholesterol oxidation products (COPs) remain a major public health concern. This study investigated the effects of cooking methods (boiling and frying) on the production levels of COPs in processed foods. Samples, as represented by minced beef, chicken sausages, and fish fillets, were subjected to different cooking methods followed by COP extraction using a saponification method. Then, six common COPs, 5α-cholest, α-epoxy, β-epoxy, 25-HC, triol, and 7-keto, were quantified by triple quadrupole gas chromatography–mass spectrometry (GS-MS/MS). A significantly high number of COPs were detected in minced meat, of which 7-keto and triol were detected as major oxidation products, followed by chicken sausages and fish fillets (p ≤ 0.05). Compared to boiling, frying generated significantly more COPs, specifically triol (0.001–0.004 mg/kg) and 7-keto (0.001–0.200 mg/kg), in all samples. Interestingly, cholesterol level was found to be slightly (but not significantly) decreased in heat-treated samples due to oxidation during cooking, producing a higher number of COPs. Notably, the fish fillets were found to produce the fewest COPs due to the presence of a low amount of cholesterol and unsaturated fatty acids. In conclusion, adapting boiling as a way of cooking and choosing the right type of meat could serve to reduce COPs in processed foods.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3