Advanced Fitting Method for the Kinetic Analysis of Thermogravimetric Data

Author:

Bondarchuk IvanORCID,Bondarchuk SergeyORCID,Vorozhtsov Alexander,Zhukov Alexander

Abstract

The article considered the solution of the inverse problem of chemical kinetics of the analysis of experimental data of a thermogravimetric experiment at a constant sample heating rate. The fitting method for identifying the parameters of a kinetic triplet using the integral method for a model of a solid-state reaction based on the modified Arrhenius equation is described. The effectiveness of the proposed approach was confirmed by solving test cases for low, medium, and high rates of material conversion. Unlike other methods, setting the parameters of the reaction mechanism is not required, as they are determined by the solution. Solutions for real data of TGA studies with high and low sample heating rates were compared with the results obtained by other authors and experimental data. A description of the full cycle of calculations used to identify kinetic parameters from thermogravimetric experimental data is given, from the derivation of calculated relationships to the implementation of a short (three to five formulas) program code for MS Excel spreadsheets. The presented code is easy to verify and reproduce and can be modified to solve various problems.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3