A Study on the Modified Arrhenius Equation Using the Oxygen Permeation Block Model of Crosslink Structure

Author:

Moon ByungwooORCID,Jun Namgyu,Park Soo,Seok Chang-Sung,Hong Ui

Abstract

Polymers are widely used in various industries because of their characteristics such as elasticity, abrasion resistance, fatigue resistance and low temperature. In particular, the tensile characteristic of rubber composites is important for the stability of industrial equipment because it determines the energy absorption rates and vibration damping. However, when a product is used for a long period of time, polymers become hardened owing to the changes in characteristics because of aging, thereby reducing the performance and increasing the possibility of accidents. Therefore, accurately predicting the mechanical properties of polymers is important for preventing industrial accidents while operating a machine. In general reactions, the linear Arrhenius equation is used to predict the aging characteristics; however, for rubber composites, it is more accurate to predict the aging characteristics using nonlinear equations rather than linear equations. However, the reason that the characteristic equation of the polymer appears nonlinear is not well known, and studies on the change in the characteristics of the natural and butadiene rubber owing to degradation are still lacking. In this study, a tensile test is performed with different aging temperatures and aging time to evaluate the aging characteristics of rubber composites using strain energy density. We propose a block effect of crosslink structure to express the nonlinear aging characteristics, assuming that a limited reaction can occur owing to the blocking of reactants in the rubber composites. Consequently, we found that a relationship exists between the crosslink structure and aging characteristics when the reduction in crosslink space owing to aging is represented stochastically. In addition, a modified Arrhenius equation, which is expressed as a function of time, is proposed to predict the degradation rate for all aging temperatures and aging times, and the formula is validated by comparing the degradation rate obtained experimentally with the degradation rate predicted by the modified Arrhenius equation.

Funder

National Research Foundation of Korea

Hyundai Motor Group

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference32 articles.

1. Development of Integrated Design System for Mechanical Rubber Components,2004

2. Vibration Analysis of Automobile Tire Due to Road Impact;Lee;J. Acoust. Soc. Korea,2003

3. Effect of aging and carbon black on the mechanical properties of EPDM rubber

4. Effect of curing system on the mechanical properties and heat aging resistance of natural rubber/tire tread reclaimed rubber blends

5. A study on the Fatigue Characteristics and Life Prediction of the Tire Sidewall Rubber;Moon;Trans. Korean Soc. Mech. Eng. A,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3