Applicability Domain of Active Learning in Chemical Probe Identification: Convergence in Learning from Non-Specific Compounds and Decision Rule Clarification

Author:

Polash Ahsan HabibORCID,Nakano Takumi,Takeda Shunichi,Brown J.B.ORCID

Abstract

Efficient identification of chemical probes for the manipulation and understanding of biological systems demands specificity for target proteins. Computational means to optimize candidate compound selection for experimental selectivity evaluation are being sought. The active learning virtual screening method has demonstrated the ability to efficiently converge on predictive models with reduced datasets, though its applicability domain to probe identification has yet to be determined. In this article, we challenge active learning’s ability to predict inhibitory bioactivity profiles of selective compounds when learning from chemogenomic features found in non-selective ligand-target pairs. Comparison of controls versus multiple molecule representations de-convolutes factors contributing to predictive capability. Experiments using the matrix metalloproteinase family demonstrate maximum probe bioactivity prediction achieved from only approximately 20% of non-probe bioactivity; this data volume is consistent with prior chemogenomic active learning studies despite the increased difficulty from chemical biology experimental settings used here. Feature weight analyses are combined with a custom visualization to unambiguously detail how active learning arrives at classification decisions, yielding clarified expectations for chemogenomic modeling. The results influence tactical decisions for computational probe design and discovery.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3