Realizing Ultrafast and Robust Sodium-Ion Storage of Iron Sulfide Enabled by Heteroatomic Doping and Regulable Interface Engineering

Author:

Shen Jinke12,Wu Naiteng2,Xie Wei2,Li Qing2,Guo Donglei2ORCID,Li Jin2,Liu Guilong2ORCID,Liu Xianming2,Mi Hongyu1

Affiliation:

1. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China

2. Key Laboratory of Green Energy Materials of Luoyang, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China

Abstract

Fe-based sulfides are a promising type of anode material for sodium-ion batteries (SIBs) due to their high theoretical capacities and affordability. However, these materials often suffer from issues such as capacity deterioration and poor conductivity during practical application. To address these challenges, an N-doped Fe7S8 anode with an N, S co-doped porous carbon framework (PPF-800) was synthesized using a template-assisted method. When serving as an anode for SIBs, it delivers a robust and ultrafast sodium storage performance, with a discharge capacity of 489 mAh g−1 after 500 cycles at 5 A g−1 and 371 mAh g−1 after 1000 cycles at 30 A g−1 in the ether-based electrolyte. This impressive performance is attributed to the combined influence of heteroatomic doping and adjustable interface engineering. The N, S co-doped carbon framework embedded with Fe7S8 nanoparticles effectively addresses the issues of volumetric expansion, reduces the impact of sodium polysulfides, improves intrinsic conductivity, and stimulates the dominant pseudocapacitive contribution (90.3% at 2 mV s−1). Moreover, the formation of a stable solid electrolyte interface (SEI) film by the effect of uniform pore structure in ether-based electrolyte produces a lower transfer resistance during the charge–discharge process, thereby boosting the rate performance of the electrode material. This work expands a facile strategy to optimize the electrochemical performance of other metal sulfides.

Funder

Natural Science Foundations of China

Natural Science Foundations of Henan Province

Universities of Henan Province

Key Science and Technology Program of Henan Province

Shanghai Cooperation Organization Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3