Introduction of SnS2 to Regulate the Ferrous Disulfide Phase Evolution for the Construction of Triphasic Heterostructures Enabling Kinetically Accelerated and Durable Sodium Storage

Author:

Zhao Zibo12,Sun Guang1,Zhang Yiming2,Hua Ran2,Wang Xiting2,Wu Naiteng2ORCID,Li Jin2,Liu Guilong2,Guo Donglei2,Cao Ang3,Liu Xianming2,Hou Hongshuai4ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Henan Polytechnic University Jiaozuo 454000 China

2. Key Laboratory of Function‐oriented Porous Materials of Henan Province College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang Henan 471934 China

3. Department of Physics. Technical University of Denmark Lyngby 2800 Denmark

4. State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha Changsha 410083 China

Abstract

AbstractTransition metal sulfides (TMSs) still confront the challenges of capacity fading and inferior fast‐charging capability for sodium storage. The rational design of heterostructures enables a new approach to conquer these drawbacks. In this work, a hierarchical structure consisting of SnS2 nanosheets and FeS2 microrods with triphasic heterostructures is proposed by the facile secondary growth and sulfidation process. The introduction of tin sources regulates the proportion of pyrite and marcasite phases, thereby achieving the triphasic heterostructures comprising pyrite, marcasite FeS2, and SnS2. When served as anode material for sodium‐ion batteries, the optimized sample exhibits a high reversible capacity (901 mAh g−1) and durable cycling performances (827 mAh g−1 after 200 cycles at 1 A g−1 and 742 mAh g−1 after 700 cycles at 5 A g−1). Paring with the commercial Na3V2(PO3)3 cathodes, the full‐cell also delivers extraordinary cyclic stability with a high capacity of 618 mAh g−1 (based on the weight of anode material) after 200 cycles at 1 A g−1 (98.7% capacity retention). The hierarchical structure with adjustably triphasic heterogeneous interfaces alleviates the volumetric expansion and interfacial passivation of active material, while modulating the energy band structure and inducing the build‐in electric fields to boost Na+/electrons transport rate.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3