The Thermal Characteristics, Sorption Isotherms and State Diagrams of the Freeze-Dried Pumpkin-Inulin Powders

Author:

Stępień AnnaORCID,Witczak MariuszORCID,Witczak TeresaORCID

Abstract

Powders based on plant raw materials have low storage stability due to their sorption and thermal properties and generate problems during processing. Therefore, there is a need to find carrier agents to improve their storage life as well as methods to evaluate their properties during storage. Water adsorption isotherms and thermal characteristics of the pumpkin powder with various inulin additions were investigated in order to develop state diagrams. Differential scanning calorimetry (DSC) was used to obtained glass transition lines, freezing curves and maximal-freeze-concentration conditions. The glass transition lines were developed using the Gordon–Taylor model. Freezing data were modeled employing the Clausius–Clapeyron equation and its development–Chen model. The glass transition temperature of anhydrous material (Tgs) and characteristic glass transition temperature of maximum-freeze-concentration (Tg′) increased with growing inulin additions. Sorption isotherms of the powders were determined at 25 °C by the static-gravimetric method and the experimental data was modeled with four different mathematical models. The Peleg model was the most adequate to describe the sorption data of the pumpkin–inulin powders. Guggenheim-Anderson-de Boer (GAB) monolayer capacity decreased with increasing inulin concentration in the sample.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3