Affiliation:
1. State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
2. The School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
Abstract
Defects in perovskite films are one of the main factors that affect the efficiency and stability of halide perovskite solar cells (PSCs). Uncoordinated ions (such as Pb2+, I−) act as trap states, causing the undesirable non-radiative recombination of photogenerated carriers. The formation of Lewis acid–base adducts in perovskite directly involves the crystallization process, which can effectively passivate defects. In this work, 4-(trifluoromethyl)-1H-imidazole (THI) was introduced into the perovskite precursor solution as a passivation agent. THI is a typical amphoteric compound that exhibits a strong Lewis base property due to its lone pair electrons. It coordinates with Lewis acid Pb2+, leading to the reduction in defect density and increase in crystallinity of perovskite films. Finally, the power conversion efficiency (PCE) of PSC increased from 16.49% to 18.97% due to the simultaneous enhancement of open-circuit voltage (VOC), short circuit current density (JSC) and fill factor (FF). After 30 days of storage, the PCE of the 0.16 THI PSC was maintained at 61.9% of its initial value, which was 44.3% for the control device. The working mechanism of THI was investigated. This work provides an attractive alternative method to passivate the defects in perovskite.
Funder
National Natural Science Foundation of China
Natural Science Foundation of NUPTSF
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献