Using Extracted Sugars from Spoiled Date Fruits as a Sustainable Feedstock for Ethanol Production by New Yeast Isolates

Author:

Antonopoulou Georgia12ORCID,Kamilari Maria34,Georgopoulou Dimitra5,Ntaikou Ioanna26

Affiliation:

1. Department of Sustainable Agriculture, University of Patras, 2 Georgiou Seferi St., GR-30100 Agrinio, Greece

2. Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, GR-26504 Patra, Greece

3. Department of Plant Protection Patras, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization ‘DIMITRA’, GR-26442 Patras, Greece

4. Health Faculty, Metropolitan College, Campus of Patras, 50 Ermou St., GR-26221 Patra, Greece

5. Department of Chemical Engineering, University of Patras, GR-26500 Patra, Greece

6. Department of Civil Engineering, University of Patras, GR-26500 Patra, Greece

Abstract

This study focuses on investigating sugar recovery from spoiled date fruits (SDF) for sustainable ethanol production using newly isolated yeasts. Upon their isolation from different food products, yeast strains were identified through PCR amplification of the D1/D2 region and subsequent comparison with the GenBank database, confirming isolates KKU30, KKU32, and KKU33 as Saccharomyces cerevisiae; KKU21 as Zygosaccharomyces rouxii; and KKU35m as Meyerozyma guilliermondii. Optimization of sugar extraction from SDF pulp employed response surface methodology (RSM), varying solid loading (20–40%), temperature (20–40 °C), and extraction time (10–30 min). Linear models for sugar concentration (R1) and extraction efficiency (R2) showed relatively high R2 values, indicating a good model fit. Statistical analysis revealed significant effects of temperature and extraction time on extraction efficiency. The results of batch ethanol production from SDF extracts using mono-cultures indicated varying consumption rates of sugars, biomass production, and ethanol yields among strains. Notably, S. cerevisiae strains exhibited rapid sugar consumption and high ethanol productivity, outperforming Z. rouxii and M. guilliermondii, and they were selected for scaling up the process at fed-batch mode in a co-culture. Co-cultivation resulted in complete sugar consumption and higher ethanol yields compared to mono-cultures, whereas the ethanol titer reached 46.8 ± 0.2 g/L.

Funder

funding programme “MEDICUS”, of the University of Patras

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3