Production of Gypenoside XVII from Ginsenoside Rb1 by Enzymatic Transformation and Their Anti-Inflammatory Activity In Vitro and In Vivo

Author:

Zhou Kailu1,Zhang Yangyang1,Zhou Yikai1,Xu Minghao1,Yu Shanshan1

Affiliation:

1. Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China

Abstract

The enzymatic transformation of the sugar moiety of the gypenosides provides a new way to obtain more pharmacologically active components. A gene encoding a family 1 glycosyl hydrolase from Bifidobacterium dentium was cloned and expressed in Escherichia coli. The recombinant enzyme was purified, and its molecular weight was approximately 44 kDa. The recombinant BdbglB exhibited an optimal activity at 35 °C and pH 5.4. The purified recombinant enzyme, exhibiting β-glucosidase activity, was used to produce gypenoside XVII (Gyp XVII) via highly selective and efficient hydrolysis of the outer glucose moiety linked to the C-3 position in ginsenoside Rb1 (G-Rb1). Under the optimal reaction conditions for large scale production of gypenoside XVII, 40 g ginsenoside Rb1 was transformed by using 45 g crude enzyme at pH 5.4 and 35 °C for 10 h with a molar yield of 100%. Furthermore, the anti-inflammatory effects of the product gypenoside XVII and its conversion precursor ginsenoside Rb1 were evaluated by using lipopolysaccharide (LPS)-induced murine RAW 264.7 macrophages and the xylene-induced acute inflammation model of mouse ear edema, respectively. Gypenoside XVII showed improved anti-inflammatory activity, which significantly inhibited the generation of TNF-α and IL-6 more effectively than its precursor ginsenoside Rb1. In addition, the swelling inhibition rate of gypenoside XVII was 80.55%, while the rate of its precursor was 40.47%, the results also indicated that gypenoside XVII had better anti-inflammatory activity than ginsenoside Rb1. Hence, this enzymatic method would be useful in the large-scale production of gypenoside XVII, which may become a new potent anti-inflammatory candidate drug.

Funder

National Natural Science Foundation of Jilin, China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3