Genome-Wide Comparative Profiles of Triterpenoid Biosynthesis Genes in Ginseng and Pseudo Ginseng Medicinal Plants

Author:

Lu Jing1

Affiliation:

1. Division of General Education, Seokyeong University, Seoul 02173, Republic of Korea

Abstract

Saponin-rich medicinal plants, particularly ginseng and Pseudo ginseng, are valuable in traditional medical practice due to the presence of different saponins. These plants benefit from natural saponins/triterpenoids drugs, such as Ginsenosides, Gypenosides, Platycodins, and Lancemasides. Ginsenosides are highly required for research and functional materials preparation in industrial practices, and some compounds, like Compound-K, have been taken to human trials for various therapeutic applications. To elucidate the genes/transcripts profiles responsible for secondary metabolites and ginsenoside biosynthesis in Ginseng and Pseudo ginseng plant genomes, a comparative analysis was conducted in this study. Nine plant genomes with a 99% BUSCO completeness score were used, resulting in 49 KEGG secondary metabolite pathways, 571 cytochromes genes with 42 families, and 3529 carbohydrate genes with 103 superfamilies. The comparative analysis revealed 24 genes/transcripts belonging to the CYP716 family, which is involved in the ginsenoside biosynthesis pathway. Additionally, it found that various ginsenosides demonstrated strong binding affinity with twelve targets, with ginsenoside Rg3, Rg2, Rh1, Rh5, F3, Rh9, Panaxadione, Protopanaxatriol, Floral ginsenoside C, and Floral ginsenoside E exhibiting the highest binding affinities with the tested enzymes. Since these groups of enzymes are not yet fully characterized for Pseudo ginseng plants in the interconversion of triterpenoids, this comparative bioinformatics analysis could aid experimentalists in selecting and conducting characterization with practical knowledge.

Funder

Seokyeong University

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3