Highly Porous Carbon Flakes Derived from Cellulose and Nickel Phosphide Heterostructure towards Efficient Electrocatalysis of Oxygen Evolution Reaction

Author:

Mijowska Ewa12ORCID,Pietrusewicz Karolina1,Maślana Klaudia12ORCID

Affiliation:

1. Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastow Ave. 45, 70-311 Szczecin, Poland

2. Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), West Pomeranian University of Technology, 70-310 Szczecin, Poland

Abstract

This study delves into the pressing challenges of climate change and the escalating carbon dioxide (CO2) emissions by exploring hydrogen technology as a sustainable alternative. In particular, there is focus on nickel phosphide-based electrocatalysts, known for their promising performance in hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs). Therefore, here we have designed a facile strategy to deliver highly porous carbon flakes derived from cellulose fibers via carbonization at 850 °C, yielding highly porous structures and outstanding specific surface area (SSAcel_carb_850_act = 3164 m2/g) after activation. As-fabricated carbon was utilized as a support for Ni12P5 with an optimized mass ratio. Electrochemical testing revealed that the composite of Ni12P5 and carbon flakes with a ratio of 100:1, respectively, exhibited the most favorable kinetics for the oxygen evolution reaction (OER). Importantly, the durability tests of this sample demonstrated the most stable behavior and lowest potential change under high current density among the studied samples, making it a promising candidate in practical applications. Moreover, the analysis of electrocatalysts after an OER does not show any changes, indicating that the sample does not undergo undesired intermediate reactions and that unwanted products are not released, explaining its stable behavior. This provides a straightforward approach for creating a cellulose-derived composite with enhanced electroactivity and durability.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3