Core–Shell CoS2@MoS2 with Hollow Heterostructure as an Efficient Electrocatalyst for Boosting Oxygen Evolution Reaction

Author:

Guo Donglei1ORCID,Xu Jiaqi1,Liu Guilong1ORCID,Yu Xu2ORCID

Affiliation:

1. Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China

2. Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China

Abstract

It is imperative to develop an efficient catalyst to reduce the energy barrier of electrochemical water decomposition. In this study, a well-designed electrocatalyst featuring a core–shell structure was synthesized with cobalt sulfides as the core and molybdenum disulfide nanosheets as the shell. The core–shell structure can prevent the agglomeration of MoS2, expose more active sites, and facilitate electrolyte ion diffusion. A CoS2/MoS2 heterostructure is formed between CoS2 and MoS2 through the chemical interaction, and the surface chemistry is adjusted. Due to the morphological merits and the formation of the CoS2/MoS2 heterostructure, CoS2@MoS2 exhibits excellent electrocatalytic performance during the oxygen evolution reaction (OER) process in an alkaline electrolyte. To reach the current density of 10 mA cm−2, only 254 mV of overpotential is required for CoS2@MoS2, which is smaller than that of pristine CoS2 and MoS2. Meanwhile, the small Tafel slope (86.9 mV dec−1) and low charge transfer resistance (47 Ω) imply the fast dynamic mechanism of CoS2@MoS2. As further confirmed by cyclic voltammetry curves for 1000 cycles and the CA test for 10 h, CoS2@MoS2 shows exceptional catalytic stability. This work gives a guideline for constructing the core–shell heterostructure as an efficient catalyst for oxygen evolution reaction.

Funder

Key Science and Technology Program of Henan Province

Program for Science & Technology Innovation Talents in Universities of Henan Province

Natural Science Foundation of Henan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3