Author:
Ji Xiaojia,Jin Chunming,Dong Xialan,Dixon Maria S.,Williams Kevin P.,Zheng Weifan
Abstract
Drug repurposing is an effective means for rapid drug discovery. The aim of this study was to develop and validate a computational methodology based on Literature-Wide Association Studies (LWAS) of PubMed to repurpose existing drugs for a rare inflammatory breast cancer (IBC). We have developed a methodology that conducted LWAS based on the text mining technology Word2Vec. 3.80 million “cancer”-related PubMed abstracts were processed as the corpus for Word2Vec to derive vector representation of biological concepts. These vectors for drugs and diseases served as the foundation for creating similarity maps of drugs and diseases, respectively, which were then employed to find potential therapy for IBC. Three hundred and thirty-six (336) known drugs and three hundred and seventy (370) diseases were expressed as vectors in this study. Nine hundred and seventy (970) previously known drug-disease association pairs among these drugs and diseases were used as the reference set. Based on the hypothesis that similar drugs can be used against similar diseases, we have identified 18 diseases similar to IBC, with 24 corresponding known drugs proposed to be the repurposing therapy for IBC. The literature search confirmed most known drugs tested for IBC, with four of them being novel candidates. We conclude that LWAS based on the Word2Vec technology is a novel approach to drug repurposing especially useful for rare diseases.
Funder
National Institutes of Health
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献