Applying a Gene Reversal Rate Computational Methodology to Identify Drugs for a Rare Cancer: Inflammatory Breast Cancer

Author:

Ji Xiaojia1,Williams Kevin P1,Zheng Weifan1

Affiliation:

1. BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, USA

Abstract

The aim of this study was to utilize a computational methodology based on Gene Reversal Rate (GRR) scoring to repurpose existing drugs for a rare and understudied cancer: inflammatory breast cancer (IBC). This method uses IBC-related gene expression signatures (GES) and drug-induced gene expression profiles from the LINCS database to calculate a GRR score for each candidate drug, and is based on the idea that a compound that can counteract gene expression changes of a disease may have potential therapeutic applications for that disease. Genes related to IBC with associated differential expression data (265 up-regulated and 122 down-regulated) were collated from PubMed-indexed publications. Drug-induced gene expression profiles were downloaded from the LINCS database and candidate drugs to treat IBC were predicted using their GRR scores. Thirty-two (32) drug perturbations that could potentially reverse the pre-compiled list of 297 IBC genes were obtained using the LINCS Canvas Browser (LCB) analysis. Binary combinations of the 32 perturbations were assessed computationally to identify combined perturbations with the highest GRR scores, and resulted in 131 combinations with GRR greater than 80%, that reverse up to 264 of the 297 genes in the IBC-GES. The top 35 combinations involve 20 unique individual drug perturbations, and 19 potential drug candidates. A comprehensive literature search confirmed 17 of the 19 known drugs as having either anti-cancer or anti-inflammatory activities. AZD-7545, BMS-754807, and nimesulide target known IBC relevant genes: PDK, Met, and COX, respectively. AG-14361, butalbital, and clobenpropit are known to be functionally relevant in DNA damage, cell cycle, and apoptosis, respectively. These findings support the use of the GRR approach to identify drug candidates and potential combination therapies that could be used to treat rare diseases such as IBC.

Funder

Center for Scientific Review

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3