Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis

Author:

Musielak Ewelina,Feliczak-Guzik AgnieszkaORCID,Nowak IzabelaORCID

Abstract

Solid lipid nanoparticles (SLNs) have been synthesized as potential drug delivery systems. They are classified as solid lipid nanocarriers that can successfully carry both hydrophilic and hydrophobic drugs. SLNs are based on a biocompatible lipid matrix that is enzymatically degraded into natural components found in the human body. Solid lipid nanoparticles are suitable for the incorporation of hydrophobic active ingredients such as curcumin. The study included the optimization of lipid nanoparticle composition, incorporation of the active compound (curcumin), a stability evaluation of the obtained nanocarriers and characterization of their lipid matrix. Through process optimization, a dispersion of solid lipid nanoparticles (solid lipid:surfactant—2:1.25 weight ratio) predisposed to the incorporation of curcumin was developed. The encapsulation efficiency of the active ingredient was determined to be 99.80%. In stability studies, it was found that the most suitable conditions for conducting high-pressure homogenization are 300 bar pressure, three cycles and a closed-loop system. This yields the required values of the physicochemical parameters (a particle size within a 200–450 nm range; a polydispersity index of <30%; and a zeta potential of about |±30 mV|). In this work, closed-loop high-pressure homogenization was used for the first time and compared to the currently preferred open-loop method.

Funder

Foundation for Polish Science

National Centre for Research and Development

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference65 articles.

1. Solid lipid nanoparticles (SLN)--effects of lipid composition on in vitro degradation and in vivo toxicity;Weyhers;Pharmazie,2006

2. Solid lipid nanoparticles: A review;Ekambaram;Sci. Revs. Chem. Commun.,2012

3. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products

4. 20 Years of Lipid Nanoparticles (SLN & NLC): Present State of Development & Industrial Applications;Müller;Curr. Drug Discov. Technol.,2011

5. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3