Determination of Odor Air Quality Index (OAQII) Using Gas Sensor Matrix

Author:

Dobrzyniewski DominikORCID,Szulczyński BartoszORCID,Gębicki JacekORCID

Abstract

This article presents a new way to determine odor nuisance based on the proposed odor air quality index (OAQII), using an instrumental method. This indicator relates the most important odor features, such as intensity, hedonic tone and odor concentration. The research was conducted at the compost screening yard of the municipal treatment plant in Central Poland, on which a self-constructed gas sensor array was placed. It consisted of five commercially available gas sensors: three metal oxide semiconductor (MOS) chemical sensors and two electrochemical ones. To calibrate and validate the matrix, odor concentrations were determined within the composting yard using the field olfactometry technique. Five mathematical models (e.g., multiple linear regression and principal component regression) were used as calibration methods. Two methods were used to extract signals from the matrix: maximum signal values from individual sensors and the logarithm of the ratio of the maximum signal to the sensor baseline. The developed models were used to determine the predicted odor concentrations. The selection of the optimal model was based on the compatibility with olfactometric measurements, taking the mean square error as a criterion and their accordance with the proposed OAQII. For the first method of extracting signals from the matrix, the best model was characterized by RMSE equal to 8.092 and consistency in indices at the level of 0.85. In the case of the logarithmic approach, these values were 4.220 and 0.98, respectively. The obtained results allow to conclude that gas sensor arrays can be successfully used for air quality monitoring; however, the key issues are data processing and the selection of an appropriate mathematical model.

Funder

National Science Center

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3