Wastewater Treatment Plants as a Source of Malodorous Substances Hazardous to Health, Including a Case Study from Poland

Author:

Czarnota Joanna1ORCID,Masłoń Adam1ORCID,Pajura Rebeka1ORCID

Affiliation:

1. Department of Environmental Engineering and Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszow, Poland

Abstract

Using Poland as an example, it was shown that 41.6% of the requests for intervention in 2016–2021 by Environmental Protection Inspections were related to odour nuisance. Further analysis of the statistical data confirmed that approximately 5.4% of wastewater treatment plants in the group of municipal facilities were subject to complaints. Detailed identification of the subject of odour nuisance at wastewater treatment plants identified hydrogen sulphide (H2S), ammonia (NH3) and volatile organic compounds (VOCs) as the most common malodorous substances within these facilities. Moreover, the concentrations of hydrogen sulphide and ammonia exceed the reference values for some substances in the air (0.02 mg/m3 for H2S and 0.4 mg/m3 for NH3). A thorough assessment of the properties of these substances made it clear that even in small concentrations they have a negative impact on the human body and the environment, and their degree of nuisance is described as high. In the two WWTPs analysed in Poland (WWTP 1 and WWTP 2), hydrogen sulphide concentrations were in the range of 0–41.86 mg/m3 (Long-Term Exposure Limit for H2S is 7.0 mg/m3), ammonia 0–1.43 mg/m3 and VOCs 0.60–134.79 ppm. The values recognised for H2S cause lacrimation, coughing, olfactory impairment, psychomotor agitation, and swelling of the cornea with photophobia. Recognition of the methods used in practice at WWTPs to reduce and control malodorous emissions indicates the possibility of protecting the environment and human health, but these solutions are ignored in most facilities due to the lack of requirements specified in legislation.

Funder

Rzeszów University of Technology

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3